3 Choice of Theoretical Method

Exercise 1 Determine the Proton Affinity for Pyridine using AM1.

Open / Chem3D.

Build a molecule of C_5H_5N . Use alternating entries using the Single Bond and Double Bond Tools to create C_5H_6 . Click the Text Tool and click the C atom that will be changed to a N atom. Type N in the text window and hit the Enter key.

Click the Select Tool and click in the workspace.

Save as pyram1.c3d.

- Calculate $\Delta_{\rm f} H$ using AM1 by clicking MOPAC / Minimize Energy, selecting Theory: AM1, and Run.
- Open the message window at the bottom by clicking on the Expansion Arrow and record the value ______ kcal mol⁻¹.

Save the structure.

Build the $C_5H_5NH^+$ structure by adding a H atom and placing a +1 charge on the N atom. Click the Text Tool and click the N atom. Type N+ in the text window and hit the Enter key.

Click the Select Tool and click in the workspace.

Save as hpyram1.csf. Calculate $\Delta_{f}H$ using AM1 geometry. Record the value ______ kcal mol⁻¹ and save the structure.

Given $\Delta_{\rm f} H = 367.161$ kcal mol⁻¹ for H⁺, calculate the $\Delta_{\rm r} H =$ PA for

 $C_{5}H_{5}N + H^{+} \rightarrow C_{5}H_{5}NH^{+}$ using $\Delta_{r}H = \Delta_{f}H(C_{5}H_{5}NH^{+}) - [\Delta_{f}H(C_{5}H_{5}N) + \Delta_{f}H(H^{+})] = \underline{\qquad}$ kcal mol⁻¹.

The literature value is -219.2 ± 1.7 kcal mol⁻¹. Calculate the percent difference =

Close the workspace.

Exercise 2 Determine the Proton Affinity for Pyridine using PM3.

Open pyram1.c3d and save as pyrpm3.c3d.

Calculate $\Delta_{f}H$ using PM3 geometry. Record the value _____ kcal mol⁻¹ and save the structure.

Close the workspace.

Open hpyram1.c3d and save as hpyrpm3.c3d.

Calculate $\Delta_{f}H$ using PM3 geometry. Record the value ______ kcal mol⁻¹ and save the structure.

Given $\Delta_{f}H = 367.161$ kcal mol⁻¹ for H⁺, calculate the $\Delta_{r}H = PA$ for $C_{r}H_{r}N + H^{+} \rightarrow C_{r}H_{r}NH^{+}$

using
$$\Delta_{\mathbf{r}}H = \Delta_{\mathbf{f}}H(\mathbf{C}_{5}\mathbf{H}_{5}\mathbf{NH}^{+}) - [\Delta_{\mathbf{f}}H(\mathbf{C}_{5}\mathbf{H}_{5}\mathbf{N}) + \Delta_{\mathbf{f}}H(\mathbf{H}^{+})] = \underline{\qquad}$$
 kcal

mol⁻¹. Calculate the percent difference = _____. Close the workspace.

Exercise 3 Determine the Proton Affinity for Pyridine using *ab initio* Methods.

Chem3D does not have *ab initio* capabilities. However, Chem3D serves as a graphical interface to Gaussian '03 for various *ab initio* calculations and to GAMESS for Hartree-Fock *ab initio* calculations.

Using Gaussian '03

Open pyrpm3.c3d and save as pyrdft.c3d. Click Gaussian / Minimize Energy / Theory. Choose Method: B3LYP, Basis Set: 6-31G, Polarization: Heavy Atom d. Click Run. (This calculation may take several minutes.) Record the value of E =h. Save the structure Open hpyrpm3.c3d and save as hpyrdft.c3d Calculate the minimum energy as above. Record the value of E =_____h. Save the structure. Calculate the $\Delta_{,H}$ for $C_5H_5N + H^+ \rightarrow C_5H_5NH^+$ using $\Delta_{\rm r} H = [H({\rm C}_5{\rm H}_5{\rm N}{\rm H}^4) - H({\rm C}_5{\rm H}_5{\rm N})](627.51 \text{ kcal mol}^{-1}/{\rm h}) = _$ _____ kcal mol^{-1} . Calculate the percent difference = . Using GAMESS Open pyrpm3.c3d and save as pyrgam.c3d. Click Gamess / Minimize Energy / Theory. Choose Method: Hartree-Fock, Basis Set: 6-31G, Polarization: Heavy Atom d. Click Run. (This calculation may take a few minutes.) Record the value of E =h. Save the structure. Open hpyrpm3.c3d and save as hpyrgam.c3d Calculate the minimum energy as above. Record the value of E = h. Save the structure. Calculate the $\Delta_{r}H$ for $C_5H_5N + H^+ \rightarrow C_5H_5NH^+$ using $\Delta_r H = [H(C_5H_5NH^+) - H(C_5H_5N)](627.51 \text{ kcal mol}^{-1}/h) = ____kcal$ mol^{-1} . Calculate the percent difference = _____.