3 Choice of Theoretical Method

Exercise 1 Determine the Proton Affinity for Pyridine using PM3.

Open GaussView.
Construct pyridine by double clicking the Ring Fragment icon (1 st row, 2 nd
across), clicking the pyridine fragment (2^{nd} row, 2^{nd} across) and
clicking in the View workspace. C_5H_5N appears.
Click Calculate / Gaussian and choose Job: Opt+Freq and defaults; Method: pyridine
Semiempirical, PM3, and defaults, Title: pyridine PM3; Link 0:
PYRIDINEPM3.chk and defaults; defaults for other tabs.
Click Submit. Save as PYRIDINEPM3.gjf. Click OK.
After the job is completed, click Yes twice and open PYRIDINEPM3.chk. Click Results /
Summary to see the summary of the calculations.
Close everything but the main Control Panel.
Open the PYRIDINEPM3.log file using a text editor such as WordPad and scroll to the
bottom. Scroll up about 300 lines (\sim 10 clicks on the scroll bar) and locate the
line "Sum of electronic and thermal Enthalpies". Record this value $H(C_5H_5N) =$
Eh.
Close the log file.
Click File / New / Create MolGroup.
Click the Ring Fragment icon and choose benzene (1 st row, 1 st across) and click in the
View workspace. C_6H_6 appears.
Click the Element Fragment icon twice and choose N. Click N atom (1 st across) and
click one of the C atoms in the benzene. $C_5H_5NH^+$ appears.
Optimize at the PM3 level as above. Save as HPYRIDINEPM3.chk and
HPYRIDINEPM3.gjf. Be sure that the charge is 1 in the Method window.
Close everything but the main Control Panel.
Open the HPYRIDINEPM3.log file and record the value of "Sum of electronic and
thermal Enthalpies" $H(C_5H_5NH^+) = $ Eh.
Given the "Sum of electronic and thermal Enthalpies" of H^+ is $H(H^+) = 0.002368$ Eh
(note: no electronic energy!), calculate the proton affinity $\Delta_{\mu}H = PA$ for
$C_5H_5N + H^+ \rightarrow C_5H_5NH^+$
using PA = { $H(C_5H_5NH^+) - [H(C_5H_5N) + H(H^+)]$ }(625.5095) = kcal
mol ⁻¹ .
The literature value is -219.2 ± 1.7 kcal mol ⁻¹ . Calculate the percent difference =
·

Exercise 2 Determine the Proton Affinity for Pyridine using Hatree-Fock.

Click File / Recent Files / PYRIDINEPM3.chk.

Click Calculate / Gaussian and choose Opt+Freq for the Job; Hartee-Fock and 6-31G(d) for the method and basis set; and give the calculation an appropriate title.

Submit and save the files as PYRIDINEHF.gjf and PYRIDINEHF.chk. The calculations will require a few minutes to complete. Close everything but the main Control Panel. Record the value $H(C_5H_5N) =$ _____ Eh from the .log file. Likewise, open HPYRIDINEPM3.chk and submit the job as HPYRIDINEHF.gjf and HPYRIDINEHF.chk. Close everything but the main Control Panel. Record the value of $H(C_5H_5NH^+) =$ _____Eh. Calculate the proton affinity PA _____kcal mol⁻¹ and the percent difference =

Exercise 3 Determine the Proton Affinity for Pyridine using B3LYP/6-31G(d).

Click File / Recent Files / PYRIDINEHF.chk.

Click Calculate / Gaussian and choose Opt+Freq for the Job; DFT, B3LYP and 6-31G(d) for the method and basis set; and give the calculation an appropriate title.

Submit and save the files as PYRIDINEDFT.gjf and PYRIDINEDFT.chk.

The calculations will require a few minutes to complete.

Close everything but the main Control Panel.

Record the value $H(C_5H_5N) =$ _____ Eh from the .log file.

Likewise, open HPYRIDINEHF.chk and submit the job as HPYRIDINEDFT.gjf and HPYRIDINEDFT.chk.

Close everything but the main Control Panel.

Record the value of $H(C_5H_5NH^+) =$ _____Eh. Calculate the proton affinity PA _____kcal mol⁻¹ and the percent difference =

Close everything but the main Control Panel.