4 Single Point Energies and Geometry Optimizations

Ι

Π

н

Н

Н

O

Н

Exercise 1 Determine the Optimum Structure for Ethenol (vinyl alcohol).

Build a model of ethenol. Use two Carbon Trivalent Element Fragments to construct ethene and click an Oxygen Tetravalent fragment on one of the H atoms to generate one of the two structures shown. Click the Clean icon.

- Click the Redundant Coordinate Editor icon to open the editor dialog window and click the Redundant Coordinate Editor icon to open the editor dialog window. Click the Create a New Coordinate icon. In the Coordinate table choose dihedral; click the H atom, the O atom, and the two C atoms to define the dihedral angle and the atom numbers will replace the ? entries; and click Scan Coordinate and enter 36 and 10. In the Set Value table choose Set to 180, a minimum of -180, and a maximum of 180. Click OK.
- Click Calculate / Gaussian. Job: Scan and Relaxed (Redundant Coord); Method: Semiempirical and PM3; use an appropriate title and save as vinylalc.chk and vinylalc.cjf.

The calculation will take a few minutes to complete.

From the Calculation Summary window, record the energies of conformer #1 (180 °)

Eh, conformer #9 (~100 °) _____ Eh, and conformer #19 (0 °)

Eh. Which conformer is more stable?

Close the results, but leave the original view window open.

- Make sure that the structure on the screen corresponds to the global minimum structure. If necessary, click the Modify Dihedral icon (1st row, 8th across) and click the same four atoms defining the dihedral angle to open the Semichem SmartSlide window. Simply move the slider to a value near the value for the global minimum structure and click OK.
- Click the Redundant Coordinate icon and click the Delete Current Coordinate icon (2nd across). Click OK.
- Perform a geometry optimization using B3LYP/6-31G(d). Be sure that the Job Type is set as a minimization and use appropriate file names. This calculation will take a few minutes. Record the energy of the optimized structure. _____ Eh.

Close everything except the main Control Panel.

Exercise 2 Performing an Energy Optimization without Searching for the Global Minimum.

Build hydrogen peroxide using the Oxygen Tetravalent fragment H___O___H twice. Click the Clean icon. Most model builders will generate a planar molecule when "cleaning up" the structure.

Exercise 3 Optimizing a Thermally Excited Molecule.

Click the Modify Dihedral icon (1st row, 8th across) and click the four atoms in the order of H - O - O - H to open the Semichem SmartSlide dialog box. Use the slider to adjust the dihedral angle to ~90 °.

 Run the B3LYP/6-31G(d) optimization. Save the files with appropriate names.

 Record the energy ______ Eh, O-H bond length ______ Å (literature 0.965 Å),

 O-O bond length ______ Å (literature 1.452 Å), H-O-O bond angle

° (literature 100.0°), and H-O-O-H dihedral angle _____° (literature 111.5°).

Close everything except the main Control Panel.

Exercise 4 Determine a Portion of the Energy Map for Cyclohexane.

Build a molecule of C_6H_{12} in the chair form by clicking the Ring
Fragment icon and choosing the chair form (5 th row, 4 th across).
Minimize at the PM3 level and record the energy Eh.
Close everything but the main Control Panel.
Build a molecule of C_6H_{12} in the twisted boat form by clicking the Ring Fragment icon
and choosing the appropriate form $(5^{th} row, 5^{th} across)$.
Minimize at the PM3 level and record the energy Eh.
Close everything.
Which conformer is the more stable? What is the energy difference between
the two stable conformers? kcal mol ⁻¹ (literature 4.0-5.5 kcal mol ⁻¹)