9 Transition States

This laboratory will study the $S_N 2$ reaction between Cl^- and CH_3Cl involving a Walden inversion.

- Construct Cl⁻ using the Chlorine Atom fragment. Calculate the energy at the PM3 level using Job: Energy and be sure the charge is listed as -1, Save as clneg.chk and clneg.cjf. Record the energy from the summary of results window ______ Eh.
- Construct CH_3Cl and minimize at the PM3 level. Save the files with appropriate names. Record the energy ______ Eh and use the Inquire icon to determine the C-Cl bond length _____ Å.

Close everything except the main Control Panel.

- Construct ClCH₃Cl⁻. Start with the Carbon Tetravalent fragment. Click the Add Valence icon (1st row, 10th across) and click the C atom. Click each of the axial H atoms with a Chlorine terminal fragment. Click the Clean icon.
- Click the Redundant Coordinate Editor icon to open the Redundant Coordinate Editor dialog window. Click the Create a New Coordinate icon and choose Bond for the Coordinate. Click one of the Cl atoms and the C atom. Click Scan Coordinates, 35 steps, 0.1 Å. Set the minimum as 1.5 and the maximum as 5.0. Click OK.

- Click Calculate / Gaussian and choose Job: Scan, Relaxed (Redundant Coordinates) and Method: PM3, -1 for charge, Doublet. Save as clch3clneg.chk and clch3clneg.cjf.
- Open the output file and summary of results. Click View / Labels to label the atoms with numbers so that the Cl atom can be identified. Click the up/down arrows to observe the steps in the PES above.
- Record the energy of the first structure corresponding to the van der Waals complex and record the two C-Cl bond lengths using the Inquire icon: _____ Eh, Å, _____Å (literature 3.27 Å, 1.83 Å).
- Click the up/down arrows until the trigonal bipyramidal transition structure is obtained. Record the two C-Cl bond lengths using the Inquire icon: _____ Eh,

Calculate $\Delta E_1 =$ ______kcal mol⁻¹ (literature 2.38 Å). $E_2 =$ _____kcal mol⁻¹ (literature 3 ± 1 kcal mol⁻¹), $\Delta E_2 =$ _____kcal mol⁻¹ (literature -12 ± 2 kcal mol⁻¹), and $\Delta E_3 =$

kcal mol⁻¹ (literature 13 ± 2 kcal mol⁻¹). (Note better agreement can be obtained by using a higher level of theory.)